Machine Learning Package for ContGridMod
Implementation of physics-informed machine learning routines for the continuous power grid model package ContGridMod
.
Installation
ContGridModML can easily be installed using the Julia package manager.
julia> using Pkg
julia> Pkg.add(url="https://github.com/laurentpagnier/ContGridMod.jl#FiniteElements")
julia> Pkg.add(url="https://github.com/julianfritzsch/ContGridModML.jl")
This package needs the FiniteElements
branch of ContGridMod
. This might conflict with preinstalled versions of ContGridMod
. If there are any problems using this package, remove any versions of ContGridMod
checked out for development and try again.
Quickstart Guide
To reproduce the results you only need to run two functions. The static parameters, i.e., the susceptances in $x$ and $y$ direction ($b_x(\mathbf{r})$ and $b_y(\mathbf{r})$), can be learned by running
julia> sol = learn_susceptances()
Similarly, to learn the dynamical parameters, i.e., the inertia $m(\mathbf{r})$ and the damping $d(\mathbf{r})$, run
julia> sol = learn_dynamical_parameters()